Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics.
نویسندگان
چکیده
Vegetation stands have a heterogeneous distribution of light quality, including the red/far-red light ratio (R/FR) that informs plants about proximity of neighbors. Adequate responses to changes in R/FR are important for competitive success. How the detection and response to R/FR are spatially linked and how this spatial coordination between detection and response affects plant performance remains unresolved. We show in Arabidopsis thaliana and Brassica nigra that localized FR enrichment at the lamina tip induces upward leaf movement (hyponasty) from the petiole base. Using a combination of organ-level transcriptome analysis, molecular reporters, and physiology, we show that PIF-dependent spatial auxin dynamics are key to this remote response to localized FR enrichment. Using computational 3D modeling, we show that remote signaling of R/FR for hyponasty has an adaptive advantage over local signaling in the petiole, because it optimizes the timing of leaf movement in response to neighbors and prevents hyponasty caused by self-shading.
منابع مشابه
Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis.
Competition for light triggers numerous developmental adaptations known as the "shade-avoidance syndrome" (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards le...
متن کاملAUX/LAX family of auxin influx carriers—an overview
Auxin regulates several aspects of plant growth and development. Auxin is unique among plant hormones for exhibiting polar transport. Indole-3-acetic acid (IAA), the major form of auxin in higher plants, is a weak acid and its intercellular movement is facilitated by auxin influx and efflux carriers. Polarity of auxin movement is provided by asymmetric localization of auxin carriers (mainly PIN...
متن کاملAsymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf1 and asymmetric leaf2 Arabidopsis leaves.
We have analyzed the development of leaf shape and vascular pattern in leaves mutant for ASYMMETRIC LEAVES1 (AS1) or AS2 and compared the timing of developmental landmarks to cellular response to auxin, as measured by expression of the DR5:beta-glucuronidase (GUS) transgene and to cell division, as measured by expression of the cycB1:GUS transgene. We found that the earliest visible defect in b...
متن کاملAuxin regulates the initiation and radial position of plant lateral organs.
Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controll...
متن کاملArabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078
Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5-1, presents serrated lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 28 شماره
صفحات -
تاریخ انتشار 2017